Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hakan Arslan, ${ }^{\text {a }}$ Ulrich Flörke ${ }^{\text {b }}$ * and Nevzat Külcüa ${ }^{\mathbf{a}}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey, and ${ }^{\mathbf{b}}$ Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.122$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N^{\prime}-(4-Chlorobenzoyl)- N, N-diphenylthiourea

The crystal packing in the title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}$, shows sheets of molecules stacked along [001].

Received 31 March 2003
Accepted 8 April 2003
Online 16 April 2003

Comment

Recently, we discussed a novel series of thiourea derivatives and their metal complexes (Arslan et al., 2003). One of these new derivatives is the title compound, (I), reported here.

(I)

The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives; the $\mathrm{C} 8-\mathrm{S} 1$ and $\mathrm{C} 7-\mathrm{O} 1$ bonds both show typical double-bond character. However, the $\mathrm{C}-\mathrm{N}$ bond lengths $\mathrm{C} 7-\mathrm{N} 1, \mathrm{C} 8-\mathrm{N} 1$ and $\mathrm{C} 8-\mathrm{N} 2$ are shorter than the normal $\mathrm{C}-\mathrm{N}$ single-bond length of about $1.48 \AA$. The shortening of these $\mathrm{C}-\mathrm{N}$ bonds reveals the effects of resonance in this part of the molecule. All other bond lengths fall within the expected ranges; the terminal $\mathrm{C} 3-\mathrm{Cl} 1$ bond length is 1.735 (2) \AA. The conformation of the molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles $\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$ and $\mathrm{C} 7-$ $\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$ of $4.9(3)$ and $49.8(3)^{\circ}$, respectively. Intermolecular hydrogen-bonding $D-\mathrm{H} \cdots A$ parameters are: $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{~S} 1(-x+1,-y+2,-z+1)$ with $\mathrm{H} \cdots A=2.48 \AA$ and a $D-\mathrm{H} \cdots A$ angle of $153^{\circ} ; \mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1(x+1, y, z)$ with $\mathrm{H} \cdots A=2.32 \AA$ and a $D-\mathrm{H} \cdots A$ angle of 133°; a weak interaction $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 1(-x, \quad-y+2, \quad-z+2)$ with $\mathrm{H} \cdots \mathrm{A}=2.68 \AA$ and a $D-\mathrm{H} \cdots A$ angle of 160° (values

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram, viewed along [100]. Hydrogen bonding is indicated by dashed lines.
normalized for $\mathrm{N}-\mathrm{H}=1.03$ and $\mathrm{C}-\mathrm{H}=1.08 \AA$). Accordingly, molecules are packed in parallel sheets along [001].

Experimental

The title compound was prepared according to the method of Arslan et al. (2003) by converting 4-chlorobenzoyl chloride into 4-chlorobenzoyl isothiocyanate and then condensing with the appropriate secondary amine. The compound was recrystallized from ethanol/ dichloromethane (1:1).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}$
$M_{r}=366.85$
Triclinic, $P \overline{1}$
$a=6.811$ (2) \AA
$b=9.950$ (1) \AA
$c=13.442$ (2) \AA
$\alpha=88.14$ (1) ${ }^{\circ}$
$\beta=79.12(2)^{\circ}$
$\gamma=89.54(1)^{\circ}$
$V=894.1(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.363 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 26 \\
& \quad \text { reflections } \\
& \theta=7.5-18.6^{\circ} \\
& \mu=0.34 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, pale yellow } \\
& 0.38 \times 0.25 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker $P 4$ diffractometer	$R_{\text {int }}=0.016$
ω scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 8$
\quad (North et al., 1968)	$k=-12 \rightarrow 12$
$T_{\min }=0.811, T_{\max }=0.946$	$l=-17 \rightarrow 17$
5122 measured reflections	3 standard reflections
4095 independent reflections	every 397 reflections
2774 reflections with $I>2 \sigma(I)$	intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.122$
$S=1.08$
4095 reflections
227 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.016 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-1 \rightarrow 8 \\
& k=-12 \rightarrow 12 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 397 \text { reflections } \\
& \text { intensity decav: }<1 \%
\end{aligned}
$$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0433 P)^{2}\right. \\
& +0.3889 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.010 (2)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.735(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.389(3)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.664(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.393(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.213(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.346(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$124.4(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$116.1(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$122.3(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$123.6(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$122.7(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$120.3(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$115.0(2)$		

H atoms were refined at calculated positions riding on the C atoms, with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: $S H E L X T L$ (Bruker, 1998); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: $S H E L X T L$.

References

Arslan, H., Flörke, U. \& Külcü, N. (2003). Transition Met. Chem. In the press. Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

